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LETTER TO THE EDITOR

Order of the vortex lattice melting transition in a type-II
superconductor as a function of magnetic field
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‡ Laboratoire de Physique des Solides, Bâtiment 510, Université Paris-Sud 91400, Orsay, France
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Abstract. Monte Carlo simulations of a lattice London model have been performed to study
the order of the vortex lattice melting transition in a pure type-II superconductor for two different
values of the total magnetic induction, using the histogram technique and Lee–Kosterlitz finite-
size scaling analysis. The results suggest that the melting transition is a first order at low fields
and may become second order above some critical field in the absence of any disorder.

A type-II superconductor in the mixed state undergoes a melting transition of its solid vortex
lattice into a (disentangled or entangled) liquid state. Theoretical calculations [1], numerical
simulations [2] and experiments [3] have yielded strong support in favour of a first-order
melting transition in pure bulk materials. However, experiments by Safaret al [4] on
clean, untwinned YBCCO single crystals seem to show that the first-order melting transition
transforms into a continuous one at high fields (about 10 T). These observations were
argued to result from disorder, which becomes relevant at large field because the melting
temperature gets lower, and smears the first-order transition. An alternative explanation
relies on the possible existence of a polymer-like glass, the relaxation timescales of which
would prevent the transition from being observed. Recent results reported by Zeldovet al
[5], who were able to probe the local induction in high-quality BSCCO crystals, while they
clearly show a first-order transition at low field, suggest the existence of a critical point
at 380 G where melting becomes continuous. The aim of this paper is to explore whether
it is possible to account for the transformation of the first-order melting transition into a
continuous one with a simple lattice model of superconductors, the behaviour of which at
the melting point is investigated by means of Monte Carlo (MC) simulations.

We use a weakly anisotropic (effective mass ratioγ 2 = 10) lattice London model,
the derivation and properties of which are thoroughly described in [6]. The model is
defined on a cubic lattice of sizeL × L × L with periodic conditions in all directions
(surface effects are therefore removed). Unit cells are of sized, that we take equal to the
bare correlation lengthξ . We use a finite penetration length orthogonal to thec-axis (z-
direction)λ1 such thatd/λ1 = 0.05. Simulations at anyL start with a densityf = n1/(Ld)2

of straight vortex lines along thec-axis, arranged in an approximate Abrikosov lattice. New
configurations, generated following the prescription of [6], are accepted or rejected according
to a standard Metropolis procedure. The update procedure conserves the total magnetic
inductionB = φ0f z. Spontaneous nucleations and subsequent fluctuations of closed loops
are neglected. The casesf = 1/(3d)2 ≡ f1 and f = 1/(6d)2 ≡ f2 are explored. In
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Figure 1. Normalized in-plane structure factorS(k) = (n1L⊥)−2〈| ∑j q3(rj )eikrj |〉 for the q3

elements, withk = (k1, k2, 0) = (2π/L‖)(n = L‖/2, m − L‖/2, 0) (n, m = 0, 1, . . . , L‖) for
an Abrikosov lattice (T = 0).

Figure 2. The same as figure 1 atT 6 Tm.

both cases, we find a melting point from rough temperature sweeps, characterized by a
peak in the heat capacity, an abrupt change in slopes of various thermodynamic quantities,
and the disappearance of Bragg peaks exhibited by the structure factor of the system in
the low-T phase (see, e.g., the structure factor below and aboveTm for a 60× 60 × 15
system atf = 1/(30d2), represented in figures 1, 2, and 3). For each value off , the
simulations were performed atL = 6, 9 (f1 only), 12, 15 (f1 only), 18, and 24 (f2 only).
Following a temperature sweep, an optimized histogram method was first used to locate
the ‘transition’ pointTm(f, L) accurately, and a single histogram simulation was run right
at that point for 5× 105 MC steps forL = 6, 9, 12 and 2× 106 MC steps forL = 15,
18 and 24. Let us recall that the histogram method (see, e.g., [7]) consists of running a
MC simulation at a temperatureT0 = −1/kBK0 to generate configurations of energyE

with a weight∝ eK0E ; the probability of observing the system in a state of energyE is
PK0(E) = Z−1

K0
N(E)eK0E , whereN(E) is the number of states of energyE. PK0(E) is

approximated byH(E)/n whereH(E) is the histogram obtained during the simulation and
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Figure 3. The same as figure 1 atT > Tm.

n the number of measurements. The distribution of energies at another valueT = −1/kBK

is given by PK(E) = Z−1
K N(E)eKE , that is, PK(E) = (Z−1

K /Z−1
K0

)e[K−K0]EPK0(E). An
approximation ofPK(E) is then

P̃K(E) = H(E)e[K−K0]E∑
E H(E)e[K−K0]E

.

This expression makes it possible in principle to computePK(E) and associated
thermodynamic quantities to locate possible phase transitions, not too far fromK0.
Additional simulations performed at other values ofK allow for an optimized approximation
of PK(E) with an appropriate combination of histograms that reduces statistical errors [8].
In the course of simulations, equilibration is checked for by running two replicas of the
system in parallel and waiting for a reasonably good superposition of, say, both energy
histograms (this procedure is very time consuming for large systems) [9]. When this is
the case, only one of the two simulations keeps running. LetK(f, L) = −1/kBTm(f, L).
At a phase transition, the free energyF(e; K(f, L)) ≡ [K(f, L)]−1 ln PK(f, L)(e), where
e = EL−3 is the internal energy per lattice site, clearly exhibits two minima separated by
a barrier of height1F(L) corresponding to the two coexisting phases. If1F(L) increases
with system sizeL for largeL (more precisely,1F(L) = aLd−1 +O(Ld−2), whered is the
dimensionality of the system), the transition is first order [10]. This method has been used by
Hetzelet al [2] to determine the order of the melting transition from a uniformly frustrated
3D XY model, and they found it to be first order. Their simulations were performed with
a model that represents an extreme type-II superconductor in a strong magnetic field, in
the absence of screening. This result does not really agree with experiments, which all
suggest that the first-order melting transition transforms into a second-order one at high
enough fields. Note that screening has recently been shown to be a crucial ingredient in a
related model of a strongly disordered superconductor, the gauge-glass model [11], where
it destroys the finite-temperature glass transition [12].

Our results on the lattice London model are summarized in figure 4, where1F(L)

is represented as a function ofL−1, for f = f1 and f = f2. For f = f2, 1F(L)

unambiguously increases withL, thereby suggesting a first-order transition. How1F

varies withL for f = f1 is not so clear: it is impossible to say, within error bars, whether
1F is increasing, decreasing, or stable asL increases. But the behaviour atf = f1 is
drastically different from the one observed atf = f2, and leaves open the possibility of



L472 Letter to the Editor

Figure 4. 1F(L) as a function ofL−1 for f = f1 andf = f2.

a continuous transition. More simulations are required to study this question (to explore
larger sizes and reduce error bars) and possibly confirm the change in nature of the melting
transition; note however that the present simulations are already very heavy, especially for
large systems, which are quite difficult to equilibrate and require many more simulation
steps (each such step taking more time to compute because of long-range interactions) to
obtain reliable histograms.

Finally, let us mention that the question of whether the transition is first or second order
in this model may be related to the absence or existence of an intermediate disentangled
phase, a controversial problem that has recently received attention [13, 14].
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